Open Grid Forum, GridVirt Session May 7-11 2007, Manchester UK

Management of Virtual Machines in Grids Infrastructures

Rubén S. Montero http://asds.dacya.ucm.es

Management of Virtual Machines in Grid Infrastructures

- 1. Grids & Virtual Machines
- 2. Case of Study: XMM-Newton SAS
- 3. Management of Virtual Machines with GridWay
- 4. Experience & Results
- 5. The GridHypervisor Project

Grids & Virtual Machines

Management of Virtual Machines in Grid Infrastructures

Grid Infrastructures

- International research projects (EGEE, OSG, TeraGrid)
 - Unprecedented levels of resource sharing
 - Increase the computational and storage resources
- High degree of heterogeneity (software & hardware)
 - 1. Increases the cost and length of application development cycle
 - 2. Limits the effective number of resources available to the user
 - 3. Increases the operational cost of the infrastructure
- Isolate and partition amount of resources contributed to the Grid.
- Even worse when using different Grids!

Grids & Virtual Machines

Management of Virtual Machines in Grid Infrastructures

Current Approaches

- Software-environment configuration systems
 - For the Users, define what applications they want to use
 - For the Sysadmins, make a applications available to the user
 - Example: SoftEnv
 - Does not completely solved none of the problems
- Deployment of software overlays
 - Custom software configurations (user-space)
 - Managed by a general-purpose LRM
 - Issues shifted from the applications to the overlaid infrastructure
 - Examples: Condor Glide-in, GridWay-BOINC

Grids & Virtual Machines

Management of Virtual Machines in Grid Infrastructures

Virtual Machines

- Renewed interest on virtualization technologies (performance and VM support)
- Add a new abstraction layer to the Grid:
 - Natural way to deal with the heterogeneity of the infrastructure
 - Allow partitioning and isolating of physical resources (access to your HW not to your system)
 - Execution of legacy applications or scientific codes.

Provide highly distributed environments with a powerful tool to overlay custom infrastructures on top of physical resources

Case of Study: XMM-Newton SAS

Management of Virtual Machines in Grid Infrastructures

SAS Science Analysis Software

- Analysis of the data provided by XMM-Newton
- Frequently released
- Support for several platforms (OS, hardware)
- Must be deployed in all the Grid resources

- Impose a significant effort
 - Sysadmin staff
 - Developers
 - Users which may need specific versions

The XMM Newton satellite

Case of Study: XMM-Newton SAS

Management of Virtual Machines in Grid Infrastructures

Goal

Leverage **actual Grid infrastructure** with virtual the use of machines:

- Straight-forward deployment using existing middleware
- Based on well-tested and standard services (productionready)
- Not tied to a given virtualization technology
- Co-exist within other Grid infrastructures

Management of Virtual Machines with GridWay

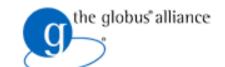
Management of Virtual Machines in Grid Infrastructures

Idea

Encapsulate a virtual machine in a grid job.

- Incorporate the functionality of a general purpose metascheduler
- Do not need new middleware
- The underlying LRMS is not aware of the nature of the job
- Only suitable to medium/coarse grained HTC applications.

Management of Virtual Machines with GridWay

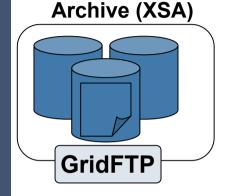

Results

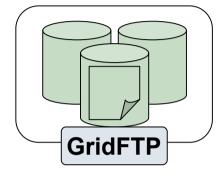
Management of Virtual Machines in Grid Infrastructures

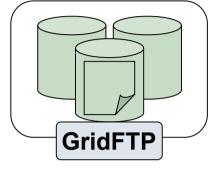
DRMAA

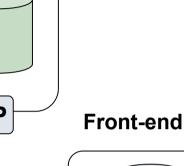
Applications CLI Application-Infrastructure decoupling .C, .java **3rid Meta-**Scheduler **GridWay Grid Middleware** Globus **PBS** SGE Infrastructure

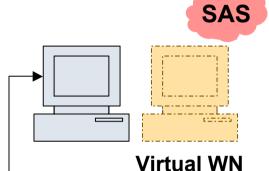
- Advanced scheduling
- Different application profiles
- Fault detection & recovery
- Job execution management
 - Prolog (stage-in)
 - Wrapper (execution)
 - Epilog (stage-out)

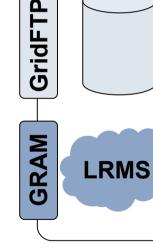


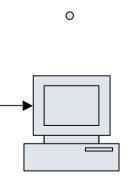



Management of Virtual Machines with GridWay


Management of Virtual Machines in Grid Infrastructures

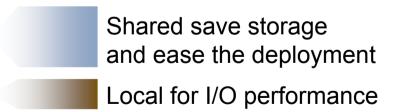






- 2.1 Stage-in to virtual WN
- 2.2 Execution in the virtual WN
- 2.3 Stage-ou to cluster FS

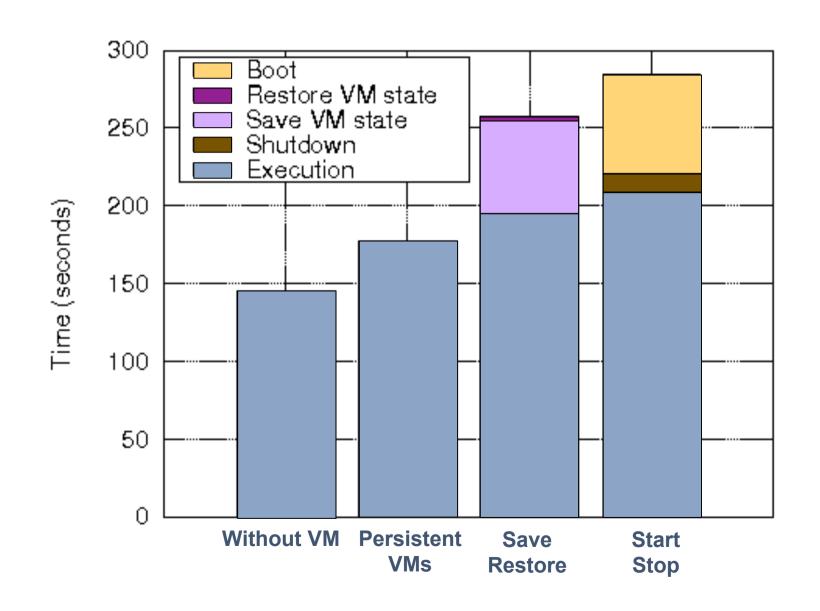
Worker Nodes


Management of Virtual Machines in Grid Infrastructures

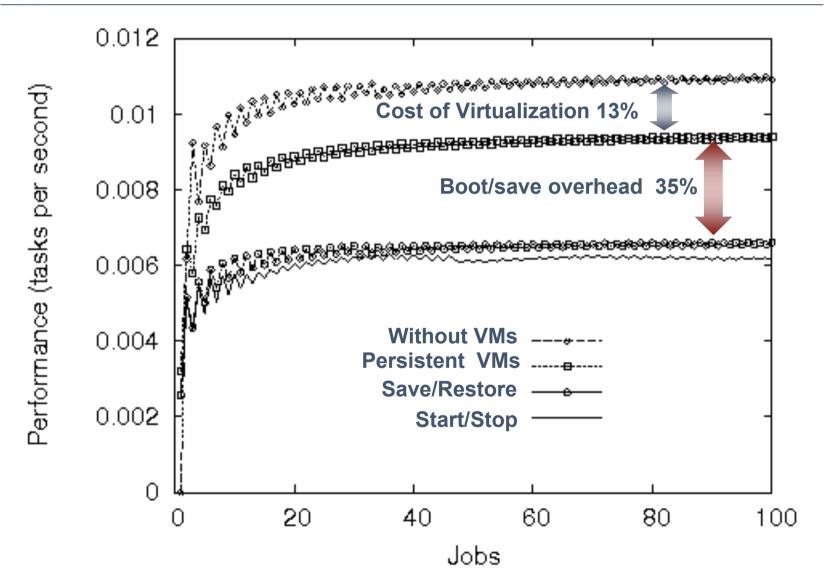
Some Implementation Details

- Xen capable resources (Worker-nodes)
- Virtual Images available at remote resources.
- Virtual OS has been hardened

Disk Image layout


Mount Point	Size	Contents
/	500M	FC4 base system
/usr	B50M	System apps.
/opt	Воом	SAS 6.5.0
/scratch	^B GB	SAS tmp

Management of Virtual Machines in Grid Infrastructures


Overhead Analysis

Management of Virtual Machines in Grid Infrastructures

Application Performance

Management of Virtual Machines in Grid Infrastructures

Experience

- Straightforward deployment of VMs on Grids.
 - Ready to work on existing infrastructures
 - Limited overhead for some deployments
 - · Significant increase of the quality of life in the Grid
- However
 - Does not fully exploit virtualization
 - Limited to medium to coarse grained batch applications

Provide persistent virtual overlay management system

The GridHypervisor Project

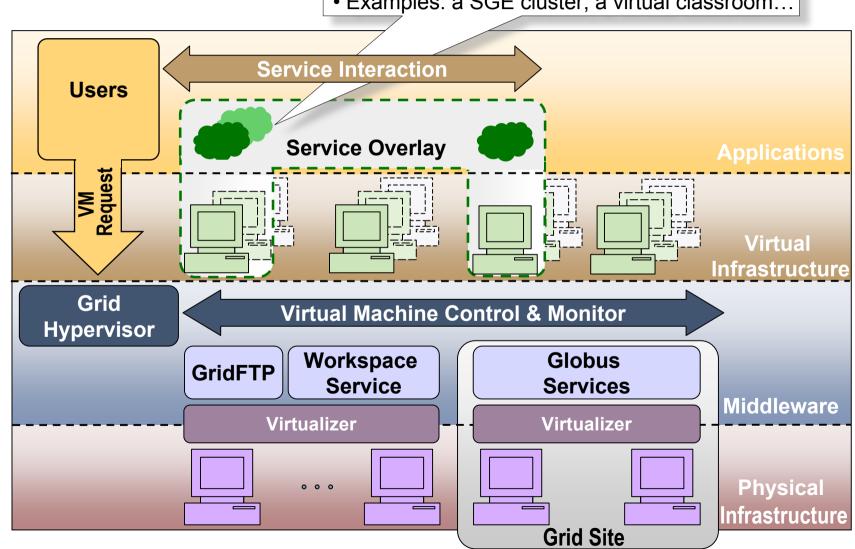
Management of Virtual Machines in Grid Infrastructures

Goal of the Proyect

Enable large-scale, reliable and dynamic deployment and reallocation of VMs between different administration domains

 The GridHypervisor will manage Virtual Infrastructures (VI) in the same way a Hypervisor manage Virtual Machines (VM)

Functionality


- Based on existing middleware, Globus Workspace Service:
 - WSRF interface
 - Start, monitor and control a Worksapce
- VI requests are handled by the GridHypervisor:
 - Physical resource Discovery and Selection
 - Remote System Preparation
 - VM Start/Migration
 - VM Monitoring
 - Termination

The GridHypervisor Project

Management of Virtual Machines in Grid Infrastructures

- Service process
- Service-ready VM Images
- Re-configured on each site
- Examples: a SGE cluster, a virtual classroom...

Management of Virtual Machines in Grid Infrastructures

Management of Virtual Machines in Grid Infrastructures

Thank you for your attention!

More Information at...

- www.gridhypervisor.org
- www.gridway.org