
GridWay Internal Report: Comparing GRAM 2

and GRAM 4 in the Open Science Grid

Tino Vázquez, Eduardo Huedo, Rubén S. Montero, and Ignacio M. Llorente

Departamento de Arquitectura de Computadores y Automática
Facultad de Informática

Universidad Complutense de Madrid, Spain
30th July, 2007

{tinova, ehuedo}@fdi.ucm.es, {rubensm, llorente}@dacya.ucm.es

1 Introduction

The Open Science Grid1 relies on the Globus Toolkit2 to provide a grid mid-
dleware. Since the Globus Toolkit 4.0 was released, it split available resources
in pre-web services and the latest web services implementations, that is, GT2
and GT4 respectively. The GridWay metascheduler offers full interoperability
between both, so it presents itself like a good candidate to perform the task of
benchmarking between both Globus versions. This comparison shows the per-
formance of the GRAM service under stress testing, under the point of view of
the application (productivity).

2 GridWay Configuration

GridWay needed a few changes in its adaptor to to be correctly configured to
interact to the OSG and thus perform this comparison. This changes were in-
cluded in the 5.2.1 release of GridWay. There are integration guides for GridWay
for the Open Science Grid3.

One important thing to note is that for this tests GridWay needs to be
compiled with pre-ws support. To have it’s pre-web service components available
it is compulsory to use the ./configure flag ”–enable-prews”, since it is disabled
by default.

The most significant changes needed in GridWay were:

– Modifications to the execution and transfer adaptors to be able to deal with
non-standard globus ports. This is due to the fact that OSG Globus instal-
lations doesn’t follow the standard 8443 port but rather the 9443 one.

– Unfortunately the information provided by in OSG Information Services
does not contain queue data and it is insufficient for GridWay to be usable.

1 http://www.opensciencegrid.org/
2 http://www.globus.org
3 http://www.gridway.org/documentation/stable/osghowto



Therefore, it is necessary to create static information for the nodes. For pre-
web service resources, the way to do this is to create a file for each of the
nodes you want to configure with the needed information for the scheduler.
This is an example of one of these files:

HOSTNAME="somehost.com" ARCH="i686" OS_NAME="Linux" OS_VERSION="2.4.21-32.ELsmp"

CPU_MODEL="Intel(R) Xeon(TM) CPU 2" CPU_MHZ=2665 CPU_FREE=189 CPU_SMP=2 NODECOUNT=1

SIZE_MEM_MB=2006 FREE_MEM_MB=964 SIZE_DISK_MB=73964 FREE_DISK_MB=62787

FORK_NAME="jobmanager-fork" LRMS_NAME="jobmanager-fork" LRMS_TYPE="fork"

QUEUE_NAME[0]="default" QUEUE_NODECOUNT[0]=1 QUEUE_FREENODECOUNT[0]=1

QUEUE_MAXTIME[0]=0 QUEUE_MAXCPUTIME[0]=0 QUEUE_MAXCOUNT[0]=1 QUEUE_MAXRUNNINGJOBS[0]=1

QUEUE_MAXJOBSINQUEUE[0]=0 QUEUE_STATUS[0]="0" QUEUE_DISPATCHTYPE[0]="Immediate"

This file consists in two lines, one for the host general info and other for queue
info. This information were gathered statically from the OSG Resources web
page for each host. In this experiment we set the NODECOUNT to 10 to
limit the number of jobs that GridWay is sending to each site. In a future
work we plan to repeat the experiment incrementing this NODECOUNT. If
you are adding more queues you have to add more lines, one for each queue.
Variables will be named like

QUEUE_NAME[1], QUEUE_NAME[2]

and so on. Afterwards you will need to create another file with each line
consisting in a pair of resource name and information file, the one previously
described. This is an example of one of this files:

somehost.com etc/osg/somehost.com.attr

otherhost.com etc/osg/otherhost.com.attr

The path to the attribute files can be a full path or relative to GW_LOCATION.
In gwd.conf you can use this lines as an example to add these resources:

IM_MAD = osg_mds2:gw_im_mad_static:-l etc/osg_prews.list:gridftp:osg_prews

EM_MAD = osg_prews:gw_em_mad_prews::rsl

TM_MAD = gridftp:gw_tm_mad_ftp:

– To configure WS OSG Resources you only need to have a file with a list
of hosts you want to access, the information with this version of OSG is
enough for GridWay to schedule and sends jobs. For the purpose of this
experiment, though, static information were used in the same fashion as
above, but just setting the NODECOUNT to 10 to make the experiment
fair for both interfaces. Therefore these lines were used in gwd.conf:

IM_MAD = osg_mds4:gw_im_mad_mds4:-l etc/osg_ws.list -p 9443:gridftp:osg_ws

EM_MAD = osg_ws:gw_em_mad_ws:-p 9443:rsl2

TM_MAD = gridftp:gw_tm_mad_ftp:

These peculiarities can be seen in Figure 1.



Fig. 1. Open Science Grid details.

3 Experiment Explained

For this experiment we used the Embarrassingly Distributed (ED) benchmark
from the NAS Grid Benchmark (NGB) suite. This benchmark represent the class
of Parameter Sweep Applications which represents a type of applications widely
used in the grid.

The experiment is based on two different measures, one with a GRAM 2
(pre web services) based testbed, and the other with a GRAM 4 (web services)
testbed. For each one, several measures were taken launching several hundred
jobs for each one. GridWay was configured so it sends as much jobs as it can to
each site.

As we have access to the OSG VO, we used the next two sites to conform
our testbed configuring gridway as explained in the section above:

– osg-itb.ligo.caltech.edu
– nest.phys.uwm.edu

These sites have both GRAM 2 and GRAM 4 interfaces.
Once GridWay is configured with each testbed, two hundred jobs were launched.

Each site was configured so only ten slots were seen by GridWay as available.
This ensures a fair comparison between both experiments, because these two sites
have a larger number of free slots, so the comparison doesn’t depend on their
workload (they are part of a test VO and, as far as these tests were concerned,
never were so overloaded as not to have ten free slots).

To gather the results all we have to do is take a snapshot of the gwps output
once the experiment is over (that is, once all the jobs have successfully com-
pleted), which gives us information about the start and end date of the job,



it’s successfulness, and it’s transfer and execution time. This is all we need to
perform the comparison.

In the next section we present a chart showing GRAM 2 against GRAM 4
productivity.

Also, a snapshot of the state of the jobs were taken each thirty seconds. The
possible jobs states are:

– Pending - The job hasn’t been scheduled or sent to a resource yet
– Prolog - The input files are being staged
– Wrapper Pending - The job has been sent and is waiting in the queue of the

LRMS
– Wrapper Active - The job is running in the final computing element
– Epilog - The output files are being staged
– Done - The job has finalized

To capture this snapshot, a script was running each thirty seconds that,
using gwps, counted the number of jobs in each of these states and saves the
information onto a file with a time-stamp.

4 Results

In the productivity chart shown in Figure 2 we have two different components,
one for GRAM 2 (blue) and one for GRAM 4 (red). Each one measures how the
number of jobs per hour varies in time. For that we plot for each job the TTBJ
(time taken by the job, i.e., the time elapsed between its start and end time)
divided by the number of jobs completed up to this one (included) against the
TTBJ.

We can observe that productivity is slightly better in GRAM 4. The exper-
iment for the Web Services GRAM finished earlier, and we can see that at the
end of its productivity for GRAM 4 is about 15 jobs per hour more than that of
GRAM 2.

Is worth noting at this point that, while productivity are around the same
level, GRAM 4 offers much more in terms of scalability and also offers all the
advantages of a Service Oriented Architecture, some of them being:

– Completely loosely coupled approach
– Authentication and authorization support at every level
– The search and connectivity to other services is dynamic

The other set of two charts were produced out of the data gathered in this
experiment. In them, the number of jobs in each state are plotted against the time
elapsed since the beginning of the experiment. We can observe how the number
of active (running) jobs (the orange bit of the chart) maintains a constant figure.
This is the result of the experiment, controlled so only 10 slots of each host are
seen. In a real world scenario, this won’t be as regular, it will depend on the
workload of the sites, but this situation won’t make a fair comparison between



Fig. 2. GRAM 2 vs GRAM 4 - Productivity.

the two interfaces. There is not a significant difference between the two charts
(Figure 3 and Figure 4), which we interpret as a marker for the fairness of the
experiment

It was the intention of this report to also show the error rate of this experi-
ment. No good chart can be plotted in this experiment out of this data because
not a single job failed, and what is more, there was no need to migrate any job.
This speaks not only for GridWay reliability but also for a good configuration
and maintenance of the OSG resources we used.

If we want to look a bit deeper into the reason why the productivity in
GRAM 4 is better than in GRAM 2 we have to calculate the overhead induced
by each interface. We are going to calculate the mean times using all the jobs.
This times and their meanings , i.e.:

– TOTAL time - Time elapsed between job submission and job completion. It
is the result of adding the SUSPENSION plus the ACTIVE time.

– SUSPENSION time - Time elapsed between when a job is submitted and
when it actually starts running

– ACTIVE time - Time elapsed between when a job starts running and when
it is completed as seen by GridWay

– REAL time - Actual time a job spends running. This information is gathered
from an instrumentalization of GridWay’s wrapper.

– OVERHEAD time - The overhead induced by the middleware. It is calcu-
lated adding the SUSPENSION plus ACTIVE times and then subtracting
the REAL time, or alternatively, subtracting the REAL time to the TOTAL
time.



If we take a look at Table 1 we can see that the overhead caused by GRAM 2
is 31 seconds, while GRAM 4 has an overhead of 24. Therefore we can conclude
that this lesser overhead is the cause of the higher productivity.

GRAM 2 GRAM 4

TOTAL 444 412
ACTIVE 410 389

SUSPEN 34 23

REAL 413 388

OVERHEAD 31 24
Table 1. Mean times for each experiment.

Fig. 3. GRAM 2 Job States.



Fig. 4. GRAM 4 Job States.


