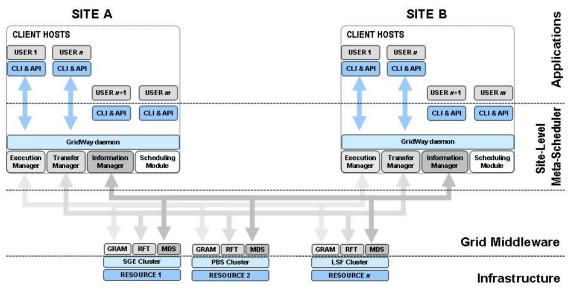
the globus' alliance

# GridWay Metascheduler 5.2


## Metascheduling Technologies for the Grid

### Overview

- GridWay, on top of Globus Toolkit services, enables large-scale, reliable and efficient sharing of computing resources (clusters, computing farms, servers, super-computers...), managed by different LRM (Local Resource Management) systems, such as PBS, SGE, LSF or Condor, within a single organization (such as an enterprise grid) or scattered across several administrative domains (partner or supply-chain grid)
- GridWay is an open-source component for meta-scheduling in the Grid Ecosystem, released under Apache license version 2.0, that gives end users, application developers and managers of Globus infrastructures a scheduling functionality similar to that found on LRM systems
- The GridWay Metascheduler is a Globus project, so it adheres to Globus philosophy and guidelines for collaborative development

#### Highlights

- Flexible and extensible architecture
- High efficiency and reliability
- State-of-the-art scheduling functionality
- Information drivers to interface MDS2 and MDS4
- Execution drivers to interface pre-WS GRAM and WS GRAM
- Transfer drivers to interface GridFTP and RFT
- Support for OGF standards: DRMAA and JSDL
- LRM-like commands to use and manage the Grid
- Interoperability between different grid infrastructures and middlewares



#### www.GridWay.org

#### **GLOBUS GRID INFRASTRUCTURE**



#### **Features and Benefits**

|                     | Feature                                                                                                    | Function                                                                                                                                                                                                                                                      | Benefits                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCHEDULING FEATURES | Advanced<br>scheduling<br>capabilities<br>on a grid<br>consisting of<br>distinct<br>computing<br>platforms | Dynamic scheduling, opportunistic migration support,<br>performance slowdown detection, self-adaptive applica-<br>tion support and checkpointing support on heterogene-<br>ous and dynamic grids managed by Globus Toolkit ser-<br>vices                      | <ul> <li>Decoupling between applications and the underlying local management systems (PBS, SGE)</li> <li>Non-intrusive execution</li> <li>Integration of non-interoperable independent computational platforms (vertical silos)</li> <li>Increased application throughput</li> <li>Uniform environment and flexible infrastructure</li> <li>Greater utilization of underlying resources</li> </ul> |
|                     | Support for array jobs                                                                                     | Array job capability provides parameterized and repeated execution of the same task.                                                                                                                                                                          | Efficient execution of high throughput computing and<br>parameter sweep applications                                                                                                                                                                                                                                                                                                               |
|                     | Support for job<br>dependencies                                                                            | Job dependency capability allows the execution of a submitted job depending on the completion of other jobs submitted in the grid                                                                                                                             | <ul> <li>Efficient execution of abstract workflows involving<br/>branching and looping</li> </ul>                                                                                                                                                                                                                                                                                                  |
|                     | Scheduling<br>policy module                                                                                | State-of-the-art scheduling policies, comprising job and resource prioritization policies.<br>Support for the definition of new scheduling policies                                                                                                           | <ul> <li>Allocation of grid resources according to management<br/>specified policies</li> </ul>                                                                                                                                                                                                                                                                                                    |
|                     | Scheduling<br>reporting and<br>accounting                                                                  | Support for the development of scheduling reporting and accounting facilities that provide detailed statistics of usage on the grid                                                                                                                           | <ul> <li>Analysis of resource utilization, determining trends in<br/>usage and monitoring user behavior</li> <li>Performance tuning</li> <li>Troubleshooting configuration problems</li> </ul>                                                                                                                                                                                                     |
|                     | Fault detection & recovery capabilities                                                                    | The meta-scheduler is able to detect and recover from<br>the remote failure situations, such as remote job cancel-<br>lation, remote system crash or outage and, network<br>disconnection; and to recover from local failure                                  | Reliable and unattended execution of jobs                                                                                                                                                                                                                                                                                                                                                          |
| USER INTERFACE      | Application<br>compatibility                                                                               | The meta-scheduler is not bounded to a specific class of<br>application generated by a given programming environ-<br>ment and does not require application deployment on<br>remote hosts                                                                      | <ul> <li>Wide application range</li> <li>Reusing of existing software</li> </ul>                                                                                                                                                                                                                                                                                                                   |
|                     | LRM Command<br>Line Interface                                                                              | The CLI interface allows users to submit, kill, migrate,<br>monitor and synchronize jobs, including MPI jobs<br>Support for OGF standard JSDL                                                                                                                 | <ul> <li>CLI similar to that found on Unix and DRM systems<br/>such as PBS or SGE</li> <li>Standard definition of jobs</li> </ul>                                                                                                                                                                                                                                                                  |
|                     | Standard<br>Applications API<br>(DRMAA)                                                                    | The scheduler provides full support for OGF standard DRMAA (C and JAVA bindings) to develop distributed applications                                                                                                                                          | <ul> <li>Integration of ISV's applications to GridWay</li> <li>Compatibility of applications with DRM systems that<br/>implements the standard, such as SGE, Torque</li> </ul>                                                                                                                                                                                                                     |
| DEPLOYMENT ISSUES   | Support for<br>multiple-users                                                                              | The installation and configuration of GridWay is per-<br>formed by the system manager and the users access<br>GridWay from a front-end or from submission hosts,<br>which do not require GridWay and Globus installation                                      | <ul> <li>Globus installation is not required in each end-user system</li> <li>Reduction in Firewall requirements</li> <li>The administrators have full control of meta-scheduling deployment</li> </ul>                                                                                                                                                                                            |
|                     | Flexible and<br>extensible<br>architecture                                                                 | The scheduler provides a modular architecture to allow<br>communication with different resource management,<br>file management and information services                                                                                                       | <ul> <li>The meta-scheduler can be extended or used as a building block for more complex architectures</li> <li>Easy development of drivers to access new computing services</li> </ul>                                                                                                                                                                                                            |
|                     | Straightforward deployment                                                                                 | The scheduler is installed on a client system and does<br>not require the installation of new services in the remote<br>resources, apart from Globus services<br>Installation based on auto-tools                                                             | Easy and fast installation                                                                                                                                                                                                                                                                                                                                                                         |
|                     | Interoperability                                                                                           | The meta-scheduler provides support for the develop-<br>ment of drivers that interface to distinct middlewares                                                                                                                                                | <ul> <li>Interoperability between different grid infrastructures<br/>and middlewares (Globus, EGEE, UNICORE)</li> </ul>                                                                                                                                                                                                                                                                            |
|                     | Supported<br>remote services                                                                               | <ul> <li>Information drivers to interface MDS2 (MDS schema),<br/>MDS2 (Glue schema) and MDS4</li> <li>Execution drivers to interface pre-WS GRAM and WS<br/>GRAM (even both simultaneously)</li> <li>Transfer drivers to interface GridFTP and RFT</li> </ul> | Support the existing platforms and resource managers<br>(fork, PBS, SGE, LSF, LoadLeveler, Condor)                                                                                                                                                                                                                                                                                                 |

Copyright 2002-2007 GridWay Team, Distributed Systems Architecture Group, Universidad Complutense de Madrid, February 2007