

An Overview of the GridWay Metascheduler

<EVENT> <City>, <Country> <Month> <day>, <year>

<GridWay Team Member> Distributed Systems Architecture Group Universidad Complutense de Madrid

Contents

1. What is GridWay?

- 2. A Global Vision
- 3. Scheduling Policies
- 4. Scheduling Infrastructures
- 5. The GridWay Project

What is GridWay?

GridWay is a Globus Toolkit component for meta-scheduling, creating a scheduler virtualization layer on top of Globus services (GRAM, MDS & GridFTP)

For project and infrastructure directors

 GridWay is an open-source community project, adhering to Globus philosophy and guidelines for collaborative development.

For system integrators

 GridWay is highly modular, allowing adaptation to different grid infrastructures, and supports several OGF standards.

For system managers

 GridWay gives a scheduling framework similar to that found on local LRM systems, supporting resource accounting and the definition of state-of-the-art scheduling policies.

For application developers

• GridWay implements the OGF standard DRMAA API (C and JAVA bindings), assuring compatibility of applications with LRM systems that implement the standard, such as SGE, Condor, Torque,...

For end users

 GridWay provides a LRM-like CLI for submitting, monitoring, synchronizing and controlling jobs, that could be described using the OGF standard JSDL.

/

GridWay

- 1. What is GridWay?
- 2. A Global Vision
- 3. Scheduling Policies
- 4. Scheduling Infrastructures
- 5. The GridWay Project

A Global Vision

GridWay

Global Architecture of a Computational Grid

Benefits

Integration of non-interoperable computational platforms (Organization)

- Establishment of a uniform and flexible infrastructure
- Achievement of greater utilization of resources and higher application throughput

Support for the existing platforms and LRM Systems (Sys. Admin.)

- Allocation of grid resources according to management specified policies
- Analysis of trends in resource usage
- Monitoring of user behavior

Familiar CLI and standard APIs (End Users & Developers)

- High Throughput Computing Applications
- Workflows

Features

Workload Management

- Advanced (Grid-specific) scheduling policies
- Fault detection & recovery
- Accounting
- Array jobs and DAG workflows

User Interface

- OGF standards: JSDL & DRMAA (C and JAVA)
- Analysis of trends in resource usage
- Command line interface, similar to that found on local LRM Systems

Integration

- Straightforward deployment as new services are not required
- Interoperability between different infrastructures

A Global Vision

/

GridWay

- 1. What is GridWay?
- 2. A Global Vision

3. Scheduling Policies

- 4. Scheduling Infrastructures
- 5. The GridWay Project

GridWay

- 1. What is GridWay?
- 2. A Global Vision
- 3. Scheduling Policies
- 4. Scheduling Infrastructures
- 5. The GridWay Project

Enterprise Grid Infrastructures

Characteristics

 "Small" scale infrastructures (campus/enterprise) with one meta-scheduler instance providing access to resources within the same administration domain that may be running different DRMS and be geographically distributed

Goal & Benefits

- Integrate multiple systems, that could be heterogeneous, in an uniform/centralized infrastructure
- Decoupling of applications and resources
- Improve return of IT investment
- Performance/Usage maximization

Scheduling

• Centralized meta-scheduler that allows the enforcement of **Grid-wide policies** (e.g. resource usage) and provides **centralized accounting**

Scheduling Infrastructures

Enterprise Grids: Examples

European Space Astronomy Center

- Data Analysis from space missions (DRMAA)
- Site-level meta-scheduler
- Several clusters

Enterprise Grids: Examples

UABGrid, University of Alabama at Birmingham

- Bioinformatics applications
- Campus-level meta-scheduler
- 3 resources (PBS, SGE and Condor)

Partner Grid Infrastructures

Characteristics

• "Large" scale infrastructures with one or several meta-scheduler instances providing access to resources that belong to different administrative domains (different organizations or partners)

Goal & Benefits

- Large-scale, secure and reliable sharing of resources between partners or supply-chain participants
- Support collaborative projects
- Access to higher computing power to satisfy peak demands

Scheduling

 Decentralized scheduling system that allows the enforcement of organization-wide policies

DSA Group

he globus[®] alliance

DSA Group

Partner Grids: Examples

AstroGrid-D, German Astronomy Community Grid

- Collaborative management of supercomputing resources & astronomy-specific resources
- Grid-level meta-scheduler (GRAM interface)
- 22 resources @ 5 sites, 800 CPUs

DSA Grou

Utility Grid Infrastructures

Characteristics

- Multiple meta-scheduler layers in a hierarchical structure
- Resource provision in a utility fashion (provider/consumer)

Goal & Benefits

- Supply resources on-demand, making resource provision more adaptive
- Access to *unlimited* computational capacity
- Transform IT costs from fixed to variable
- Seamless integration of different Grids (The Grid)

Scheduling

- Each Grid is handled as any other resource
- Characterization of a Grid as a single resource
- Use standard interfaces to virtualize a Grid infrastructure

23/29

GridWay

- 1. What is GridWay?
- 2. A Global Vision
- 3. Scheduling Policies
- 4. Scheduling Infrastructures
- 5. The GridWay Project

DSA Grou

The GridWay Project

Some Projects and Infrastructures

- . IRISGrid
- Politecnico di Torino
- . CABGrid (Centro de Astrobiología)
- . C2VO (Universidad de Castilla La Mancha)
- . Grid en ESAC (Agencia Espacial Europea)
- · CRO-GRID (Croacia)
- . Sun Microsystems Solution Center World Grid
- . Infraestructura EGEE
- Proyecto BeinGRID
- GridX1 (Canadian Grid for HEP applications)
- . Universidade do Porto
- Madras Institute of Technology
- National Center for High-Performance Computing

Some Application Porting Areas

- Life-Sciences
- . Aerospace
- Fusion Physics
- Computational Chemistry

History of the Project

- Started in 2002, first releases were only distributed on request in binary format
- First open source release (v4.0) in January 2005 (Apache license v2.0)
- Adhering to Globus philosophy and guidelines for collaborative development
- In June 2007 GridWay became part of the Globus Toolkit
- Since January 2005, more than **1000 downloads from 80 different countries**, 25% are private companies and 75% are universities and research centers.
- Best-effort support provided (contract support is also available)
 - Based on a strong open source community

GridWay

Development Process

- **Community –** Open Source Project. Globus Development Philosophy
- Development Infrastructure (thanks to Globus Project!)
 - Mailing Lists
 - Bugzilla
 - CVS
- You are very welcome to contribute:
 - Reporting Bugs (gridway-user@globus.org)
 - Making feature requests for the next GridWay release (gridway-user@globus.org)
 - Contributing your own developments (bug fixes, new features, documentation)
- Detailed Roadmap:
 - GridWay Campaigns at bugzilla.mcs.anl.gov/globus/query.cgi
 - www-unix.mcs.anl.gov/~bacon/cgi-bin/big-roadmap.cgi#Gridway

An Overview of the GridWay Metascheduler

Thank you for your attention!

